

Fertilizer Solutions and Opportunities

Fluid Technology Roundup Dean Fairchild, Mosaic Agronomy December 2010

Presentation Topics

A. N.A. Fertilization History

B.Plant Nutrition Today

C.Opportunities
Farmer economics
High yield systems
4 R's
16+ essential elements
Weeds
Decreasing soil nutrient levels

Fertilizer History 1940-50's

Low rates /AC

NPK's – all nutrients in same drop or granule

Limited bulk handling

Farmer applied with planters

Smaller applications

Mesaic Fertilizer History 1960-70's

Fertilizer's Time Fertilizer's golden years Numbers of retailers expands Quality clear liquids and suspensions **Bulk blends** Increase of broadcast application Floaters/tenders Fertilizer grower meetings Industry marketed fertilizer and soil fertility concepts

Mesaic Fertilizer History 1980-90's

New Weed Control Times

- Fertilizer application rates for P/K level out Weed/feed
 - Farmers come to grower meeting for a free lunch and new chemical stories
 - Fertilizer becoming a commodity
 - Precision ag

 $\mathbf{\hat{\mathbf{A}}}$

AAAAA

- Variable rate application fall 1986
- Crop consulting and services grow
- G.P.S. systems
- Yield monitors

Bio-tech Rapid adoption of G.P.S. New high yield hybrids Roundup Information surplus Rapid good/bad cycles

U.S. and Iowa Corn Yields - 1950-2009

Increasing Corn Yields

1970's - 2000: 1.9 bu/A/yr 2000-2009: 3 bu/A/yr 2030 goal: 250-300bu/A/yr or 6bu/A/yr for next 20 years

UNIVERSITY OF MINNESOTA Driven to Discover³⁴

Appleton, MN

Treatment	Yield (bu/ac)	
55K-250LB/AC	301.2	Α
45K-250LB/AC	294.7	Α
55K-125LB/AC	264.0	В
45K-125LB/AC	263.8	В
35K-125LB/AC	261.1	В
35K-250LB/AC	252.1	BC
45K-0LB/AC	243.0	BCD
35K-0LB/AC	232.6	CD
55K-0LB/AC	221.9	D
p-value	<0.0001	
LSD (0.1)	28.0	
CV (%)	6.4	

Means followed by a different letter are statistically significant (p<0.1)

Fertilizer N, P and K Application Rates For Corn Average For U.S.

Farmer Dollars Gross/acre

1990's 150 bu/ac Price/bu \$1.90 LDP \$.15 Gross/ac \$307.50/ac 1,000 acres - \$307,500 2010 205/bu/ac Price/bu \$4.60 Gross/ac \$943/ac 2000 acres \$1,886,000

Different economic world today – higher gross, higher expenses, cash flows, risk, equipment size, etc.

N Nutrient Balance Map

Mosaíc

P Nutrient Balance Map

K Nutrient Balance Map

P Budget 2006-2008 Avg Yield + 20%

Labels represent the net budget of DAP in Tons and P₂O₅ in pounds per acre, remaining from inputs after removal by harvested crops, <u>assuming</u> <u>crop yield 20% higher than the</u> <u>average yield</u>. Table below is a summary of all counties labeled on this map.

> Total Harvested Acres 6,979,239

> > Net Tons of DAP -242,487

Net Lbs of P₂O₅ / Harvested Acre -30

Oct 26, 2009

K Budget 2006-2008 Avg Yield + 20%

GENERIC DEALER - Anytown, IL

Labels represent the net budget of Potash in Tons and K₂O in pounds per acre, remaining from inputs after removal by harvested crops, <u>assuming</u> <u>crop yield 20% higher than the</u> <u>average yield</u>. Table below is a summary of all counties labeled on this map.

> Total Harvested Acres 6,979,239

Net Tons of Potash -60,906

Net Lbs of K₂O / Harvested Acre

Oct 26, 2009

U.S. Corn Yield and Nutrient Applications - Three Year Averages 1983-85 vs. 2003-05

		Nutrient Application Rates			Rates per Bushel		
U.S. Corn Years Yield	Ν	P ₂ O ₅	K₂O	Ν	P_2O_5	K₂O	
	Bu/A		Lbs / A			Lbs/Bu -	
1983-85	101.9	138	63	85	1.36	0.62	0.84
2003-05	150.1	137	59	83	0.91	0.39	0.55

Sources: Compiled from ERS, TVA, AAPFCO, TFI data.

Soil Test P Levels Impacts*

100					
		Low STP	VH STP	Yield Diff	Economies of high-P
	P ₂ O ₅ Prior to corn	50 lbs/a	50 lbs/a		
	Corn yields (3 yr av)	167 bu	193 bu	26 bu	\$117.00**
	Soybean yields (3 yr av)	39 bu	49 bu	10 bu	\$97.50**
	* Source: Randall, Univers **Corn \$4.50/bu, Soy \$9.7	sity of Minn 75/bu	esota		

Fertilizer Solutions for Lower Soil Fertility Trends

1.Combine systemic soil testing and yield MAPS to create nutrient balance MAPS by field for customers

- **2.Tell the story**
- Farm call topic
- > Newsletters
- E-mail alerts
- On-farm plots
- Training and equipping sales/marketing staff

3.Tools for objection of cost of soil build decision, land tenure issue

4.Not an agronomy issue but marketing and economics

Rapid trend back to preplant/preemerge weed control to supplement Roundup programs

Weed/feed with UAN Weed/feed with NPK suspensions

Opportunity – High Yield Systems

Interactions

Rates

Placement

Timing

Source

4 R's

Interactions/Rates

Higher nutrient levels required for population returns*

	Corn Yields		
Plant Population	Traditional <u>230+0+0</u>	Enhanced <u>230+100+80+40S</u>	Fertility <u>Response</u>
28,000	202	225	23
42,000	196	262	66
Population Response	-6	37	

*Kansas State University Soil test for P and K - high

Liquids and High Yields

Placement and timing become very important +liquids Need to go beyond N-P-K + liquids Stalk yields with high population + liquids Starters with big planters + liquids Late season applications + liquids Increase total nutrient uptake and amounts/day + liquids

Beyond N-P-K

Sulfur

- 1. More low S soil test
- 2. High yields
- 3. N/S, P/S interactions
- 4. Sulfate/elemental issue
- 5. Stalks and immobilization issues

Zinc

37% of soil samples in IPNI survey below critical level in zinc

Boron, Mn – Soybeans?

Mosaic

Treatment	Corn Yields bu/ac
Check	137
Ν	187
N +P	243
N+P+K	256
N+P+K+S	265

*Kansas State University

Liquids and Micro's

Coverage /ft₂

Placement

Timing

Response maybe in parts of field vs. general

Yield increases 5-10 bu – hard to see without plots and yield measurements

Carrier for micro's

Reinforcing a Commodity Fertilizer Program

- 1. Dad was well trained in 70's on fertility so new farm decision makers already understand soil fertility and fertilization
- 2. Soil testing for field average is fine
- 3. It's too hot in growing corn to collect plant tissue samples

Reinforcing a Commodity Fertilizer Program

Etc.

- 4. My customer are fine with 180-200 bu corn yields
- 5. High yields clubs are for 80-90's
- 6. All fertilizer sources are the same "if applied correctly".
- 7. Farmers will not pay for helping transform information and data into crop production decision.